Outer Billiards, Arithmetic Graphs and Multigrid Flows
نویسنده
چکیده
I considered the first construction in my book, Outer Billiards on Kites [S2]. The arithmetic graphs served as the main tool for understanding the dynamics of outer billiards on kites. See §2 for definitions. The second construction, which is quite general, is based on patterns of oriented lines in the Euclidean plane. See §3 for definitions. The concrete instance of the multigrid construction that is related to outer billiards on kites is closely connected to Sturmian sequences . I am grateful to John Smillie for his beautiful explanation of the renormalization theory for Sturmian sequences. I am also grateful to Smillie (and also Mark Sapir) for suggesting to me that my arithmetic graphs might be related to Sturmian sequences. This connection is far from being worked out. I call my main result the Coarse Isomorphism Theorem. I have not yet tried to prove the Coarse Isomorphism Theorem, though I have some idea
منابع مشابه
The second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملOn Third Geometric-Arithmetic Index of Graphs
Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.
متن کاملOn Second Geometric-Arithmetic Index of Graphs
The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.
متن کاملENTROPY OF GEODESIC FLOWS ON SUBSPACES OF HECKE SURFACE WITH ARITHMETIC CODE
There are dierent ways to code the geodesic flows on surfaces with negative curvature. Such code spaces give a useful tool to verify the dynamical properties of geodesic flows. Here we consider special subspaces of geodesic flows on Hecke surface whose arithmetic codings varies on a set with innite alphabet. Then we will compare the topological complexity of them by computing their topological ...
متن کاملOn the total version of geometric-arithmetic index
The total version of geometric–arithmetic index of graphs is introduced based on the endvertex degrees of edges of their total graphs. In this paper, beside of computing the total GA index for some graphs, its some properties especially lower and upper bounds are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012